dc.contributorTomazella, Vera Lucia Damasceno
dc.contributorhttp://lattes.cnpq.br/8870556978317000
dc.contributorhttp://lattes.cnpq.br/0092258556747592
dc.creatorJesus, Sandra Rêgo de
dc.date.accessioned2014-12-12
dc.date.accessioned2016-06-02T20:04:53Z
dc.date.available2014-12-12
dc.date.available2016-06-02T20:04:53Z
dc.date.created2014-12-12
dc.date.created2016-06-02T20:04:53Z
dc.date.issued2014-11-21
dc.identifierJESUS, Sandra Rêgo de. Análise bayesiana objetiva para as distribuições normal generalizada e lognormal generalizada. 2014. 125 f. Tese (Doutorado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2014.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/4495
dc.description.abstractThe Generalized Normal (GN) and Generalized lognormal (logGN) distributions are flexible for accommodating features present in the data that are not captured by traditional distribution, such as the normal and the lognormal ones, respectively. These distributions are considered to be tools for the reduction of outliers and for the obtention of robust estimates. However, computational problems have always been the major obstacle to obtain the effective use of these distributions. This paper proposes the Bayesian reference analysis methodology to estimate the GN and logGN. The reference prior for a possible order of the model parameters is obtained. It is shown that the reference prior leads to a proper posterior distribution for all the proposed model. The development of Monte Carlo Markov Chain (MCMC) is considered for inference purposes. To detect possible influential observations in the models considered, the Bayesian method of influence analysis on a case based on the Kullback-Leibler divergence is used. In addition, a scale mixture of uniform representation of the GN and logGN distributions are exploited, as an alternative method in order, to allow the development of efficient Gibbs sampling algorithms. Simulation studies were performed to analyze the frequentist properties of the estimation procedures. Real data applications demonstrate the use of the proposed models.
dc.publisherUniversidade Federal de São Carlos
dc.publisherBR
dc.publisherUFSCar
dc.publisherPrograma de Pós-Graduação em Estatística - PPGEs
dc.rightsAcesso Aberto
dc.subjectAnálise de referência bayesiana
dc.subjectDistribuição normal generalizada
dc.subjectDistribuição lognormal generalizada
dc.subjectKullback-Leibler
dc.subjectMistura de escala uniforme
dc.subjectReference bayesian analysis
dc.subjectGeneralized normal distribution
dc.subjectGeneralized lognormal distribution
dc.subjectKullback-leibler divergence
dc.subjectScale mixtures of uniform
dc.titleAnálise bayesiana objetiva para as distribuições normal generalizada e lognormal generalizada
dc.typeTesis


Este ítem pertenece a la siguiente institución