dc.contributorLeite, José Galvão
dc.contributorhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=E94199
dc.contributorhttp://lattes.cnpq.br/5464564215528609
dc.creatorSalasar, Luis Ernesto Bueno
dc.date.accessioned2012-01-16
dc.date.accessioned2016-06-02T20:04:51Z
dc.date.available2012-01-16
dc.date.available2016-06-02T20:04:51Z
dc.date.created2012-01-16
dc.date.created2016-06-02T20:04:51Z
dc.date.issued2011-11-18
dc.identifierSALASAR, Luis Ernesto Bueno. Eliminação de parâmetros perturbadores em um modelo de captura-recaptura. 2011. 69 f. Tese (Doutorado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2011.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/4485
dc.description.abstractThe capture-recapture process, largely used in the estimation of the number of elements of animal population, is also applied to other branches of knowledge like Epidemiology, Linguistics, Software reliability, Ecology, among others. One of the _rst applications of this method was done by Laplace in 1783, with aim at estimate the number of inhabitants of France. Later, Carl G. J. Petersen in 1889 and Lincoln in 1930 applied the same estimator in the context of animal populations. This estimator has being known in literature as _Lincoln-Petersen_ estimator. In the mid-twentieth century several researchers dedicated themselves to the formulation of statistical models appropriated for the estimation of population size, which caused a substantial increase in the amount of theoretical and applied works on the subject. The capture-recapture models are constructed under certain assumptions relating to the population, the sampling procedure and the experimental conditions. The main assumption that distinguishes models concerns the change in the number of individuals in the population during the period of the experiment. Models that allow for births, deaths or migration are called open population models, while models that does not allow for these events to occur are called closed population models. In this work, the goal is to characterize likelihood functions obtained by applying methods of elimination of nuissance parameters in the case of closed population models. Based on these likelihood functions, we discuss methods for point and interval estimation of the population size. The estimation methods are illustrated on a real data-set and their frequentist properties are analised via Monte Carlo simulation.
dc.publisherUniversidade Federal de São Carlos
dc.publisherBR
dc.publisherUFSCar
dc.publisherPrograma de Pós-Graduação em Estatística - PPGEs
dc.rightsAcesso Aberto
dc.subjectEstatística
dc.subjectEstimativas de máxima verossimilhança
dc.subjectTamanho populacional
dc.subjectPopulação fechada
dc.subjectCaptura-recaptura
dc.subjectEliminação de parâmetros perturbadores
dc.subjectIntervalos de confiança
dc.subjectFunção de verossimilhança condicional
dc.subjectFunção de verossimilhança integrada
dc.subjectFunção de verossimilhança perfilada
dc.subjectCapture-recapture
dc.subjectClosed population
dc.subjectConditional likelihood function
dc.subjectConfidence intervals
dc.subjectElimination of nuisance parameters
dc.subjectIntegrated likelihood function
dc.subjectMaximum likelihood estimation
dc.subjectProfile likelihood function
dc.subjectPopulation size
dc.titleEliminação de parâmetros perturbadores em um modelo de captura-recaptura
dc.typeTesis


Este ítem pertenece a la siguiente institución