dc.contributorLeite, Fábio de Lima
dc.contributorhttp://lattes.cnpq.br/5490031389817518
dc.contributorCampos, Sérgio Dias
dc.contributorhttp://lattes.cnpq.br/5443100596356812
dc.contributorCruz, Térsio Guilherme de Souza
dc.contributorhttp://lattes.cnpq.br/0705292304279277
dc.contributorhttp://lattes.cnpq.br/5625045786963147
dc.creatorAmarante, Adriano Moraes
dc.date.accessioned2014-07-30
dc.date.accessioned2016-06-02T19:19:55Z
dc.date.available2014-07-30
dc.date.available2016-06-02T19:19:55Z
dc.date.created2014-07-30
dc.date.created2016-06-02T19:19:55Z
dc.date.issued2013-03-19
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/1169
dc.description.abstractIn this work was developed a prototype of a new nanobiosensor with molecular specificity through a study of theoretical models of Chemical Force Microscope. For the sensing were used molecular modeling techniques as well as experimental models of the functionalized Atomic Force Microscope tip with the Acetil co-A Carboxylase (ACC) attached. Specific and non-specific inhibitors were used to evaluate substrate-enzyme interactions. The nanobiosensor investigates specific enzymatic inhibition characteristics of the ACC enzyme through the herbicide Diclofop by reversing this process applying a force in a determined direction. The force is theoretically calculated by using molecular dynamic techniques associated to the adhesion force experimentally obtained. Theoretical and experimental questions involving nanobiosensors of AFM tips still obscure until now, such as, the number of functional enzymes attached on the AFM tip, the number of the active sites available to interact after immobilization process, the consequences of the enzyme immobilization as well as the substrate and theoretical adhesion between AFM tip and substrate were analyzed here.
dc.publisherUniversidade Federal de São Carlos
dc.publisherBR
dc.publisherUFSCar
dc.publisherPrograma de Pós-Graduação em Ciência dos Materiais - PPGCM-So
dc.rightsAcesso Aberto
dc.subjectModelagem Molecular Computacional
dc.subjectMicroscopia de Força Química (MFQ)
dc.subjectbiossensores
dc.subjectnanobiossensor
dc.subjectdinâmica molecular
dc.subjectDocking Molecular
dc.subjectAcetil-coA Carboxilase
dc.subjectDiclofop
dc.subjectfuncionalização de Superfícies
dc.subjectnanobiosensor
dc.subjectmolecular modeling
dc.subjectAtomic Force Microscopy
dc.subjectChemical Force Microscopy
dc.subjectMolecular Dynamics
dc.subjectMolecular Docking. Acetil-coA Carboxilase
dc.subjectDiclofop
dc.subjectSurface Functionalization
dc.titleDesenvolvimento da microscopia de força química usando modelagem molecular
dc.typeTesis


Este ítem pertenece a la siguiente institución