dc.contributorGonzalez, Sahudy Montenegro
dc.contributorhttp://lattes.cnpq.br/9826346918182685
dc.contributorOikawa, Marcio Katsumi
dc.contributorhttp://lattes.cnpq.br/4438914190540949
dc.contributorSakata, Tiemi Christine
dc.contributorhttp://lattes.cnpq.br/3560505262283874
dc.contributorhttp://lattes.cnpq.br/5079756785405008
dc.creatorBerbel, Talita dos Reis Lopes
dc.date.accessioned2015-10-13
dc.date.accessioned2016-06-02T19:07:09Z
dc.date.available2015-10-13
dc.date.available2016-06-02T19:07:09Z
dc.date.created2015-10-13
dc.date.created2016-06-02T19:07:09Z
dc.date.issued2015-03-23
dc.identifierBERBEL, Talita dos Reis Lopes. Semantic recommendation of text documents through personalizing OLAP aggregation. 2015. 116 f. Dissertação (Mestrado em Ciências Exatas) - Universidade Federal de São Carlos, Sorocaba, 2015.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/632
dc.description.abstractWith the rapid growth of unstructured data, such as text documents, it becomes more and more interesting and necessary to extract such information to support decision making in business intelligence systems. Recommendations can be used in the OLAP process, because they allow users to have a particular experience in exploiting data. The process of recommendation, together with the possibility of query personalisation, allows recommendations to be increasingly relevant. The main contribution of this work is to propose an effective solution for semantic recommendation of documents through personalisation of OLAP aggregation queries in a data warehousing environment. In order to aggregate and recommend documents, we propose the use of semantic similarity. Domain ontology and the statistical measure of frequency are used in order to verify the similarity between documents. The threshold of similarity between documents in the recommendation process is adjustable and this is the personalisation that provides to the user an interactive way to improve the relevance of the results. The proposed case study is based on articles from PubMed and its domain ontology in order to create a prototype using real data. The results of the experiments are presented and discussed, showing that good recommendations and aggregations are possible with the suggested approach. The results are discussed on the basis of evaluation measures: precision, recall and F1-measure.
dc.publisherUniversidade Federal de São Carlos
dc.publisherBR
dc.publisherUFSCar
dc.publisherPrograma de Pós-Graduação em Ciência da Computação - PPGCC-So
dc.rightsAcesso Aberto
dc.subjectdata warehouse
dc.subjectOLAP
dc.subjectdados textuais
dc.subjectagregação
dc.subjectrecomendação
dc.subjectsemântica
dc.subjectontologia
dc.subjectLCA
dc.subjectpersonalização de consultas
dc.subjectMeSH
dc.subjectTecnologia OLAP
dc.subjectontologia
dc.subjectsemântica
dc.subjectdata warehouse
dc.subjectOLAP
dc.subjecttextual data
dc.subjectaggregation
dc.subjectrecommendation
dc.subjectsemantic
dc.subjectontology
dc.subjectLCA
dc.subjectQuery Personalization
dc.subjectMeSH
dc.titleRecomendação semântica de documentos de texto mediante a personalização de agregações OLAP.
dc.typeTesis


Este ítem pertenece a la siguiente institución