Tesis
Aprendizado genético de funções de pertinência na modelagem nebulosa.
Fecha
2004-08-20Registro en:
PIRES, Matheus Giovanni. Aprendizado genético de funções de pertinência na modelagem nebulosa.. 2004. 145 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2004.
Autor
Pires, Matheus Giovanni
Institución
Resumen
The success of Fuzzy Rule Based Systems is due to their ability to represent vague and
uncertain knowledge and to the facility to express the system behavior in a language easily
interpretable by human beings. The knowledge acquisition of a Fuzzy Rule Based System is
done from a human expert, which is known as the direct approach to knowledge acquisition,
or through methods that automatically extract this knowledge from numerical information that
represent samples or examples of the problem. Genetic Algorithms have demonstrated to be a
powerful tool to rule bases construction, rule bases optimization, membership functions
generation and membership functions optimization. The main research focus of this work is
the investigation of fuzzy systems automatic generation approaches applied to pattern
classification problems, using genetic algorithms to the definition and tuning of fuzzy sets that
belong to the fuzzy partitions of the domains involved, considering interpretability
maintenance of the linguistic values. The genetic learning is employed only in the fuzzy
system data base, that is, in the membership functions, either through the traditional way of
tuning previously defined functions after the rule base has been defined or through the more
recent approach of constructing membership functions before the rules definition. This kind of
investigation requires the use of different rule generation methods, the rules being generated
before or after the use of genetic algorithm. The combination Fuzzy Systems + Genetic
Algorithms, known as Genetic Fuzzy Systems, has great acceptance in the scientific
community, since this systems are robust and capable of finding good solutions in complex
and irregular spaces.