dc.contributorNicoletti, Maria do Carmo
dc.contributorhttp://genos.cnpq.br:12010/dwlattes/owa/prc_imp_cv_int?f_cod=K4787728A5
dc.creatorFigueira, Lucas Baggio
dc.date.accessioned2005-05-09
dc.date.accessioned2016-06-02T19:06:13Z
dc.date.available2005-05-09
dc.date.available2016-06-02T19:06:13Z
dc.date.created2005-05-09
dc.date.created2016-06-02T19:06:13Z
dc.date.issued2004-05-28
dc.identifierFIGUEIRA, Lucas Baggio. Sobre o modelo neural RuleNet e suas características simbólica e cooperativa.. 2004. 168 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2004.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/566
dc.description.abstractMachine learning is an area of Artificial Intelligence that deals with methods and techniques for implementing automatic learning in computational systems. This research work investigates a machine learning neural model called RuleNet and its extension for fuzzy domains named Fuzzy RuleNet. Among the advantages of the RuleNet proposal are its simplicity, easiness and fast training as well as the way it represents the induced concept, which can be characterized as symbolic. This aspect makes RuleNet suitable for participating in cooperative systems. This research work investigates both the contribution of the RuleNet model as a stand alone learning technique as well as part of a cooperative system. It presents and discusses the results obtained in several experiments, evaluating RuleNet as a stand alone machine learning (versus two other machine learning methods, the ID3 and the NGE) and as part of a cooperative system, articulated to ID3 and to NGE.
dc.publisherUniversidade Federal de São Carlos
dc.publisherBR
dc.publisherUFSCar
dc.publisherPrograma de Pós-Graduação em Ciência da Computação - PPGCC
dc.rightsAcesso Aberto
dc.subjectInteligência artificial
dc.subjectAprendizado do computador
dc.subjectRedes neurais (computação)
dc.subjectAprendizado simbólico
dc.subjectAprendizado cooperativo
dc.titleSobre o modelo neural RuleNet e suas características simbólica e cooperativa.
dc.typeTesis


Este ítem pertenece a la siguiente institución