dc.contributorRibeiro, Marcela Xavier
dc.contributorhttp://genos.cnpq.br:12010/dwlattes/owa/prc_imp_cv_int?f_cod=K4766919E1
dc.contributorhttp://lattes.cnpq.br/9675322602859451
dc.creatorPirolla, Francisco Rocha
dc.date.accessioned2012-12-19
dc.date.accessioned2016-06-02T19:06:00Z
dc.date.available2012-12-19
dc.date.available2016-06-02T19:06:00Z
dc.date.created2012-12-19
dc.date.created2016-06-02T19:06:00Z
dc.date.issued2012-11-19
dc.identifierPIROLLA, Francisco Rocha. Redução de dimensionalidade usando agrupamento e discretização ponderada para a recuperação de imagens por conteúdo. 2012. 75 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2012.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/511
dc.description.abstractThis work proposes two new techniques of feature vector pre-processing to improve CBIR and image classification systems: a method of feature transformation based on the k-means clustering approach (Feature Transformation based on K-means - FTK) and a method of Weighted Feature Discretization - WFD. The FTK method employs the clustering principle of k-means to compact the feature vector space. The WFD method performs a weighted feature discretization, privileging the most important feature ranges to distinguish images. The proposed methods were employed to pre-process the feature vector in CBIR and in classification approaches, comparing the results with the pre-processing performed by PCA (a well known feature transformation method) and the original feature vector: FTK produced a reduction in the feature vector size with an improving in the query precision and a improvement in the classification accuracy; WFD improved the query precision up to and a improvement in the classification accuracy; the combination of WFD and FTK improved also the query precision and a improvement in the classification accuracy. These are very important results, especially when compared with PCA results, which leads to a minor reduction in the feature vector size, a minor increase in the query precision and a minor increase in the classification accuracy. Also the proposed approaches have linear computational cost where PCA has a cubic computational cost. The results indicate that the proposed approaches are well-suited to perform image feature vector pre-processing improving the overall quality of CBIR and classification systems.
dc.publisherUniversidade Federal de São Carlos
dc.publisherBR
dc.publisherUFSCar
dc.publisherPrograma de Pós-Graduação em Ciência da Computação - PPGCC
dc.rightsAcesso Aberto
dc.subjectProcessamento de imagens
dc.subjectDiscretização
dc.subjectPréprocessamento
dc.subjectCBIR
dc.subjectTransformação de características
dc.subjectVetor de características
dc.subjectAgrupamento
dc.subjectClassificação
dc.subjectFeature transformation
dc.subjectDiscretization
dc.subjectPre-processing
dc.subjectFeature vector
dc.subjectClustering
dc.subjectCBIR
dc.subjectClassification
dc.titleRedução de dimensionalidade usando agrupamento e discretização ponderada para a recuperação de imagens por conteúdo
dc.typeTesis


Este ítem pertenece a la siguiente institución