dc.contributor | Ribeiro, Marcela Xavier | |
dc.contributor | http://genos.cnpq.br:12010/dwlattes/owa/prc_imp_cv_int?f_cod=K4766919E1 | |
dc.contributor | http://lattes.cnpq.br/9675322602859451 | |
dc.creator | Pirolla, Francisco Rocha | |
dc.date.accessioned | 2012-12-19 | |
dc.date.accessioned | 2016-06-02T19:06:00Z | |
dc.date.available | 2012-12-19 | |
dc.date.available | 2016-06-02T19:06:00Z | |
dc.date.created | 2012-12-19 | |
dc.date.created | 2016-06-02T19:06:00Z | |
dc.date.issued | 2012-11-19 | |
dc.identifier | PIROLLA, Francisco Rocha. Redução de dimensionalidade usando agrupamento e discretização ponderada para a recuperação de imagens por conteúdo. 2012. 75 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2012. | |
dc.identifier | https://repositorio.ufscar.br/handle/ufscar/511 | |
dc.description.abstract | This work proposes two new techniques of feature vector pre-processing to improve CBIR and image classification systems: a method of feature transformation based on the k-means clustering approach (Feature Transformation based on K-means - FTK) and a method of Weighted Feature Discretization - WFD. The FTK method employs the clustering principle of k-means to compact the feature vector space. The WFD method performs a weighted feature discretization, privileging the most important feature ranges to distinguish images. The proposed methods were employed to pre-process the feature vector in CBIR and in classification approaches, comparing the results with the pre-processing performed by PCA (a well known feature transformation method) and the original feature vector: FTK produced a reduction in the feature vector size with an improving in the query precision and a improvement in the classification accuracy; WFD improved the query precision up to and a improvement in the classification accuracy; the combination of WFD and FTK improved also the query precision and a improvement in the classification accuracy. These are very important results, especially when compared with PCA results, which leads to a minor reduction in the feature vector size, a minor increase in the query precision and a minor increase in the classification accuracy. Also the proposed approaches have linear computational cost where PCA has a cubic computational cost. The results indicate that the proposed approaches are well-suited to perform image feature vector pre-processing improving the overall quality of CBIR and classification systems. | |
dc.publisher | Universidade Federal de São Carlos | |
dc.publisher | BR | |
dc.publisher | UFSCar | |
dc.publisher | Programa de Pós-Graduação em Ciência da Computação - PPGCC | |
dc.rights | Acesso Aberto | |
dc.subject | Processamento de imagens | |
dc.subject | Discretização | |
dc.subject | Préprocessamento | |
dc.subject | CBIR | |
dc.subject | Transformação de características | |
dc.subject | Vetor de características | |
dc.subject | Agrupamento | |
dc.subject | Classificação | |
dc.subject | Feature transformation | |
dc.subject | Discretization | |
dc.subject | Pre-processing | |
dc.subject | Feature vector | |
dc.subject | Clustering | |
dc.subject | CBIR | |
dc.subject | Classification | |
dc.title | Redução de dimensionalidade usando agrupamento e discretização ponderada para a recuperação de imagens por conteúdo | |
dc.type | Tesis | |