dc.contributorHruschka Júnior, Estevam Rafael
dc.contributorhttp://lattes.cnpq.br/2097340857065853
dc.contributorhttp://lattes.cnpq.br/2508538092205306
dc.creatorGotardo, Reginaldo Aparecido
dc.date.accessioned2014-11-18
dc.date.accessioned2016-06-02T19:03:59Z
dc.date.available2014-11-18
dc.date.available2016-06-02T19:03:59Z
dc.date.created2014-11-18
dc.date.created2016-06-02T19:03:59Z
dc.date.issued2014-02-28
dc.identifierGOTARDO, Reginaldo Aparecido. Uma abordagem de sistema de recomendação orientada pelo aprendizado sem fim. 2014. 105 f. Tese (Doutorado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2014.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/292
dc.description.abstractRecommender Systems have a very well defined function: recommend something to someone. Through Artificial Intelligence techniques, more particularly from areas such as Data Mining and Machine Learning, it is possible to build recommendation systems. These systems will analyze large amounts of data and will inform users about some items that will probably interest them. However, some limitations of the recommender systems, which are sometimes, caused by the Mining or Learning models themselves or by the lack of available data make them computationally expensive or inaccurate. Besides, recommender systems in real environments are dynamic: data change over time or with new ratings, new users, new items or when user updates previous ratings. The Never Ending-Learning Approach (NEL) aims at a self-supervised and self-reflexive learning to mainly maximize learning of a system based on data from several sources, algorithms that can cooperate to make a better knowledge base considering the dynamic of real learning problems: learning improves along the time. As mentioned before, recommender systems are dynamic and depend on data between user and items. In order to minimize this dependency and to provide meaningful and useful results to users, this work presents a Recommender System approach guided by NEL Principles. Results show that it is possible to minimize or delay the data dependency through classifiers coupling techniques and concept deviation control. Due to that, it is possible to start with little data from a recommender system that will be dynamic and will receive new information. These new information will help even more in controlling the concept deviation and promoting the most useful recommendations. Then, this thesis presents how the Recommender System guided by NEL principles can contribute to the state of the art in recommender systems and implement a system with practical results through the Never-Ending Learning Approach.
dc.publisherUniversidade Federal de São Carlos
dc.publisherBR
dc.publisherUFSCar
dc.publisherPrograma de Pós-Graduação em Ciência da Computação - PPGCC
dc.rightsAcesso Aberto
dc.subjectSistemas de recomendação
dc.subjectInteligência artificial
dc.subjectAprendizado de computador
dc.subjectPersonalização
dc.subjectNever ending learning
dc.subjectRecommender systems
dc.subjectPersonalization
dc.subjectUser model
dc.subjectData mining
dc.subjectMachine learning
dc.titleUma abordagem de sistema de recomendação orientada pelo aprendizado sem fim
dc.typeTesis


Este ítem pertenece a la siguiente institución