dc.contributorMascarenhas, Nelson Delfino d'Ávila
dc.contributorhttp://lattes.cnpq.br/0557976975338451
dc.contributorhttp://lattes.cnpq.br/1971933217288472
dc.creatorCastro, Márcia Luciana Aguena
dc.date.accessioned2013-09-17
dc.date.accessioned2016-06-02T19:03:57Z
dc.date.available2013-09-17
dc.date.available2016-06-02T19:03:57Z
dc.date.created2013-09-17
dc.date.created2016-06-02T19:03:57Z
dc.date.issued2013-06-24
dc.identifierCASTRO, Márcia Luciana Aguena. Super resolução baseada em métodos iterativos de restauração. 2013. 147 f. Tese (Doutorado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2013.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/285
dc.description.abstractThe resolution enhancement of an image is always desirable, independently of its objective, but mainly if the image has the purpose of visual analysis. The hardware development for increasing the image resolution still has a higher cost than the algorithmic solutions for super-resolution. Like image restoration, super-resolution is also an ill-conditioned inverse problem, and has an infinite number of solutions. This work analyzes the iterative restoration methods (Van Cittert, Tikhonov-Miller and Conjugate Gradiente) which propose solutions for the ill-conditioning problem and compares them with the IBP method (Iterative Back Projection). The analysis of the found similarities is the basis of a generalization, such that other iterative restoration methods can have their properties adapted, as regularization of the ill-conditioning, noise reduction and other degradations and the increase of the convergence rate can be incorporated to the techniques of super-resolution. Two new methods were created as case studies of the proposed generalization: the first one is a super-resolution method for dynamic magnetic resonance imaging (MRI) of the swallowing process, that uses an adaptiveWiener filtering as regularization and a non-rigid registration; and the second one is a pan sharpening method of SPOT satellite bands, that uses sampling based on sensor s characteristics and non-adaptive Wiener filtering.
dc.publisherUniversidade Federal de São Carlos
dc.publisherBR
dc.publisherUFSCar
dc.publisherPrograma de Pós-Graduação em Ciência da Computação - PPGCC
dc.rightsAcesso Aberto
dc.subjectProcessamento de imagens
dc.subjectReconstrução por super resolução
dc.subjectRestauração de imagens
dc.subjectRestauração iterativa
dc.subjectFusão de imagens
dc.subjectFiltro de Wiener
dc.subjectSuper resolucão
dc.subjectRetroprojeção de imagens
dc.subjectMRI de deglutição
dc.subjectPansharpening
dc.subjectSuper-resolution
dc.subjectImages restoration
dc.subjectImages back projection
dc.subjectIterative restoration
dc.subjectImage fusion
dc.subjectWiener filter
dc.subjectSwallowing MRI
dc.subjectPansharpening
dc.titleSuper resolução baseada em métodos iterativos de restauração
dc.typeTesis


Este ítem pertenece a la siguiente institución