dc.contributorFGV
dc.creatorMoreira, Marcelo J.
dc.date.accessioned2018-05-10T13:35:49Z
dc.date.available2018-05-10T13:35:49Z
dc.date.created2018-05-10T13:35:49Z
dc.date.issued2009-10
dc.identifier0269-9931 / 1464-0600
dc.identifierhttp://hdl.handle.net/10438/23144
dc.identifier10.1016/j.jeconom.2009.01.012
dc.identifier000270696500006
dc.description.abstractThis paper applies classical exponential-family statistical theory to develop a unifying framework for testing structural parameters in the simultaneous equations model under the assumption of normal errors with known reduced-form variance matrix. The results can be divided into the limited-information and full-information categories. in the limited-information model, it is possible to characterize the entire class of similar tests in a model with only one endogenous explanatory variable. In the full-information framework, this paper proposes a family of similar tests for subsets of endogenous variables' coefficients. For both limited- and full-information models, there exist power upper bounds for unbiased tests. When the model is just-identified, the Anderson-Rubin, score, and (pseudo) conditional likelihood ratio tests are optimal. When the model is over-identified, the (pseudo) conditional likelihood ratio test has power close to the power envelope when identification is strong. (C) 2009 Elsevier B.V. All rights reserved.
dc.languageeng
dc.publisherElsevier Science Sa
dc.relationJournal of econometrics
dc.rightsrestrictedAccess
dc.sourceWeb of Science
dc.subjectInstrumental variables regression
dc.subjectCurved exponential family
dc.subjectWeak instruments
dc.subjectPre-testing
dc.titleTests with correct size when instruments can be arbitrarily weak
dc.typeArticle (Journal/Review)


Este ítem pertenece a la siguiente institución