dc.contributorFGV
dc.creatorCraizer, Marcos
dc.creatorTeixeira, Ralph Costa
dc.creatorSilva, Moacyr Alvim Horta Barbosa da
dc.date.accessioned2018-05-10T13:36:12Z
dc.date.accessioned2019-05-22T14:22:48Z
dc.date.available2018-05-10T13:36:12Z
dc.date.available2019-05-22T14:22:48Z
dc.date.created2018-05-10T13:36:12Z
dc.date.issued2012-10
dc.identifier0261-3794 / 1873-6890
dc.identifierhttp://hdl.handle.net/10438/23275
dc.identifier10.1007/s00454-012-9448-y
dc.identifier000307507800003
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/2693389
dc.description.abstractIn this paper we discuss some affine properties of convex equal-area polygons, which are convex polygons such that all triangles formed by three consecutive vertices have the same area. Besides being able to approximate closed convex smooth curves almost uniformly with respect to affine length, convex equal-area polygons admit natural definitions of the usual affine differential geometry concepts, like affine normal and affine curvature. These definitions lead to discrete analogous to the six-vertex theorem and an affine isoperimetric inequality. One can also define discrete counterparts of the affine evolute, parallels and the affine distance symmetry set preserving many of the properties valid for smooth curves.
dc.languageeng
dc.publisherSpringer
dc.relationDiscrete & computational geometry
dc.rightsrestrictedAccess
dc.sourceWeb of Science
dc.subjectEqual-area polygons
dc.subjectDiscrete six-vertex theorem
dc.subjectDiscrete isoperimetric inequality
dc.subjectDiscrete affine evolute
dc.subjectDiscrete affine distance symmetry set
dc.titleAffine properties of convex equal-area polygons
dc.typeArticle (Journal/Review)


Este ítem pertenece a la siguiente institución