dc.contributorEscolas::EPGE
dc.contributorFGV
dc.creatorAthanasopoulos, George
dc.creatorGuillen, Osmani Teixeira Carvalho
dc.creatorIssler, João Victor
dc.creatorVahid, Farshid
dc.date.accessioned2011-01-27T13:35:17Z
dc.date.accessioned2019-05-22T14:20:08Z
dc.date.available2011-01-27T13:35:17Z
dc.date.available2019-05-22T14:20:08Z
dc.date.created2011-01-27T13:35:17Z
dc.date.issued2011-01-27
dc.identifier0104-8910
dc.identifierhttp://hdl.handle.net/10438/7813
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/2692867
dc.description.abstractWe study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We suggest a new two-step model selection procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties and we prove its consistency. A Monte Carlo study explores the finite sample performance of this procedure and evaluates the forecasting accuracy of models selected by this procedure. Two empirical applications confirm the usefulness of the model selection procedure proposed here for forecasting.
dc.languageeng
dc.publisherFundação Getulio Vargas. Escola de Pós-graduação em Economia
dc.relationEnsaios Econômicos;713
dc.subjectReduced rank models
dc.subjectModel selection criteria
dc.subjectForecasting accuracy
dc.titleModel selection, estimation and forecasting in VAR models with short-run and long-run restrictions
dc.typeDocumentos de trabajo


Este ítem pertenece a la siguiente institución