dc.contributorEscolas::EPGE
dc.contributorFGV
dc.creatorGaglianone, Wagner Piazza
dc.creatorIssler, João Victor
dc.date.accessioned2015-05-28T17:55:53Z
dc.date.available2015-05-28T17:55:53Z
dc.date.created2015-05-28T17:55:53Z
dc.date.issued2015-05
dc.identifier0104-8910
dc.identifierhttp://hdl.handle.net/10438/13730
dc.description.abstractOur focus is on information in expectation surveys that can now be built on thousands (or millions) of respondents on an almost continuous-time basis (big data) and in continuous macroeconomic surveys with a limited number of respondents. We show that, under standard microeconomic and econometric techniques, survey forecasts are an affine function of the conditional expectation of the target variable. This is true whether or not the survey respondent knows the data-generating process (DGP) of the target variable or the econometrician knows the respondents individual loss function. If the econometrician has a mean-squared-error risk function, we show that asymptotically efficient forecasts of the target variable can be built using Hansens (Econometrica, 1982) generalized method of moments in a panel-data context, when N and T diverge or when T diverges with N xed. Sequential asymptotic results are obtained using Phillips and Moon s (Econometrica, 1999) framework. Possible extensions are also discussed.
dc.languageeng
dc.publisherFundação Getulio Vargas. Escola de Pós-graduação em Economia
dc.relationEnsaios Econômicos;766
dc.subjectBig data
dc.subjectCommon features
dc.subjectPanel data
dc.subjectForecast combination
dc.titleMicrofounded forecasting
dc.typeWorking Paper


Este ítem pertenece a la siguiente institución