dc.contributorEscolas::EPGE
dc.contributorFGV
dc.creatorAthanasopoulos, George
dc.creatorGuillen, Osmani Teixeira Carvalho
dc.creatorIssler, João Victor
dc.date.accessioned2009-02-05T16:05:59Z
dc.date.accessioned2010-09-23T18:57:18Z
dc.date.accessioned2019-05-22T14:11:26Z
dc.date.available2009-02-05T16:05:59Z
dc.date.available2010-09-23T18:57:18Z
dc.date.available2019-05-22T14:11:26Z
dc.date.created2009-02-05T16:05:59Z
dc.date.created2010-09-23T18:57:18Z
dc.date.issued2009-02-05
dc.identifier0104-8910
dc.identifierhttp://hdl.handle.net/10438/2192
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/2691171
dc.description.abstractWe study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We consider model selection criteria which have data-dependent penalties for a lack of parsimony, as well as the traditional ones. We suggest a new procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties. In order to compute the fit of each model, we propose an iterative procedure to compute the maximum likelihood estimates of parameters of a VAR model with short-run and long-run restrictions. Our Monte Carlo simulations measure the improvements in forecasting accuracy that can arise from the joint determination of lag-length and rank, relative to the commonly used procedure of selecting the lag-length only and then testing for cointegration.
dc.languageeng
dc.publisherFundação Getulio Vargas. Escola de Pós-graduação em Economia
dc.relationEnsaios Econômicos;688
dc.subjectReduced rank models
dc.subjectModel selection criteria
dc.subjectForecasting accuracy
dc.titleModel selection, estimation and forecasting in VAR models with short-run and long-run restrictions
dc.typeDocumentos de trabajo


Este ítem pertenece a la siguiente institución