dc.contributorFGV
dc.creatorSilva, Moacyr Alvim Horta Barbosa da
dc.creatorTeixeira, Ralph Costa
dc.creatorPesco, Sinesio
dc.creatorCraizer, Marcos
dc.date.accessioned2018-05-10T13:35:39Z
dc.date.accessioned2019-05-22T14:08:51Z
dc.date.available2018-05-10T13:35:39Z
dc.date.available2019-05-22T14:08:51Z
dc.date.created2018-05-10T13:35:39Z
dc.date.issued2008-01
dc.identifier1560-3547 / 1468-4845
dc.identifierhttp://hdl.handle.net/10438/23087
dc.identifier10.1007/s10851-007-0038-1
dc.identifier000252167700001
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/2690670
dc.description.abstractIn a previous paper, it was proved that the area based affine distance of a convex region in the plane satisfies a non-homogeneous Monge-Ampere differential equation. Based on this equation, in this paper we propose a fast marching method for the computation of this distance. The proposed algorithm has a lower computational complexity than the direct method and we have proved its convergence. And since the algorithm allows one to obtain a connection from any point of the region to the boundary by a path of decreasing distance, it offers a dynamic point of view for the area based affine distance.
dc.languageeng
dc.publisherSpringer
dc.relationJournal of mathematical imaging and vision
dc.rightsrestrictedAccess
dc.sourceWeb of Science
dc.subjectAffine distances
dc.subjectAffine geometry
dc.subjectFast marching methods
dc.subjectMonge-ampere equation
dc.titleA fast marching method for the area based affine distance
dc.typeArticle (Journal/Review)


Este ítem pertenece a la siguiente institución