dc.contributorFGV
dc.creatorSantos, Cicero Nogueira dos
dc.creatorZadrozny, Bianca
dc.date.accessioned2018-05-10T13:36:50Z
dc.date.accessioned2019-05-22T14:08:44Z
dc.date.available2018-05-10T13:36:50Z
dc.date.available2019-05-22T14:08:44Z
dc.date.created2018-05-10T13:36:50Z
dc.date.issued2014
dc.identifier978-3-319-09761-9; 978-3-319-09760-2
dc.identifier0302-9743
dc.identifierhttp://hdl.handle.net/10438/23485
dc.identifier000358252900008
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/2690648
dc.description.abstractPart-of-speech (POS) tagging for morphologically rich languages normally requires the use of handcrafted features that encapsulate clues about the language's morphology. In this work, we tackle Portuguese POS tagging using a deep neural network that employs a convolutional layer to learn character-level representation of words. We apply the network to three different corpora: the original Mac-Morpho corpus; a revised version of the Mac-Morpho corpus; and the Tycho Brahe corpus. Using the proposed approach, while avoiding the use of any handcrafted feature, we produce state-of-the-art POS taggers for the three corpora: 97.47% accuracy on the Mac-Morpho corpus; 97.31% accuracy on the revised Mac-Morpho corpus; and 97.17% accuracy on the Tycho Brahe corpus. These results represent an error reduction of 12.2%, 23.6% and 15.8%, respectively, on the best previous known result for each corpus.
dc.languageeng
dc.publisherSpringer Int Publishing Ag
dc.relationComputational processing of the portuguese language
dc.rightsrestrictedAccess
dc.sourceWeb of Science
dc.subjectPortuguese part-of-speech tagging
dc.subjectDeep learning
dc.subjectConvolutional neural networks
dc.subjectRecognition
dc.titleTraining state-of-the-art portuguese POS taggers without handcrafted features
dc.typeConference Proceedings


Este ítem pertenece a la siguiente institución