dc.contributorCoelho, Flávio Codeço
dc.contributorEscolas::EMAp
dc.contributorTargino, Rodrigo dos Santos
dc.contributorBastos, Leonardo Soares
dc.creatorMussumeci, Elisa
dc.date.accessioned2018-06-14T19:45:29Z
dc.date.accessioned2019-05-22T14:05:05Z
dc.date.available2018-06-14T19:45:29Z
dc.date.available2019-05-22T14:05:05Z
dc.date.created2018-06-14T19:45:29Z
dc.date.issued2018-04-12
dc.identifierhttp://hdl.handle.net/10438/24093
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/2689931
dc.description.abstractWe used the Infodengue database of incidence and weather time-series, to train predictive models for the weekly number of cases of dengue in 790 cities of Brazil. To overcome a limitation in the length of time-series available to train the model, we proposed using the time series of epidemiologically similar cities as predictors for the incidence of each city. As Machine Learning-based forecasting models have been used in recent years with reasonable success, in this work we compare three machine learning models: Random Forest, lasso and Long-short term memory neural network in their forecasting performance for all cities monitored by the Infodengue Project.
dc.languageeng
dc.subjectMachine learning
dc.subjectNeural networks
dc.subjectTime series
dc.subjectForecasting
dc.subjectEpidemiology
dc.subjectAprendizado por máquina
dc.subjectRedes neurais
dc.titleA machine learning approach to dengue forecasting: comparing LSTM, Random Forest and Lasso
dc.typeDissertation


Este ítem pertenece a la siguiente institución