dc.contributorFGV
dc.creatorLinhares, Alexandre
dc.date.accessioned2018-05-10T13:35:48Z
dc.date.accessioned2019-05-22T13:59:01Z
dc.date.available2018-05-10T13:35:48Z
dc.date.available2019-05-22T13:59:01Z
dc.date.created2018-05-10T13:35:48Z
dc.date.issued2009-09
dc.identifier0899-8256 / 1090-2473
dc.identifierhttp://hdl.handle.net/10438/23142
dc.identifier10.1016/j.ijpe.2009.04.023
dc.identifier000270622600014
dc.identifierLinhares, Alexandre/0000-0001-6772-2823; Linhares, Alexandre/0000-0002-4227-6879
dc.identifierLinhares, Alexandre/A-4810-2009
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/2688754
dc.description.abstractThe theory of constraints (TOC) proposes that, when production is bounded by a single bottleneck, the best product mix heuristic is to select products based on their ratio of throughput per constraint use. This, however, is not true for cases when production is limited to integer quantities of final products. Four facts that go against current thought in the TOC literature are demonstrated in this paper. For example, there are cases in which the optimum product mix includes products with the lowest product margin and the lowest ratio of throughput per constraint time, simultaneously violating the margin heuristic and the TOC-derived heuristic. Such failures are due to the non-polynomial completeness (NP-completeness) of the product-mix decision problem, also demonstrated here. (C) 2009 Elsevier B.V. All rights reserved.
dc.languageeng
dc.publisherElsevier Science Bv
dc.relationInternational journal of production economics
dc.rightsrestrictedAccess
dc.sourceWeb of Science
dc.subjectTheory of constraints
dc.subjectProduct mix
dc.subjectProduct margin heuristic
dc.subjectTOC-derived heuristic
dc.subjectNP-hardness
dc.titleTheory of constraints and the combinatorial complexity of the product-mix decision
dc.typeArticle (Journal/Review)


Este ítem pertenece a la siguiente institución