dc.contributorEscolas::EPGE
dc.contributorFGV
dc.creatorFernandes, Marcelo
dc.creatorMonteiro, Paulo Klinger
dc.date.accessioned2008-05-13T15:28:04Z
dc.date.available2008-05-13T15:28:04Z
dc.date.created2008-05-13T15:28:04Z
dc.date.issued2004-02-01
dc.identifier0104-8910
dc.identifierhttp://hdl.handle.net/10438/612
dc.description.abstractAsymmetric kernels are quite useful for the estimation of density functions with bounded support. Gamma kernels are designed to handle density functions whose supports are bounded from one end only, whereas beta kernels are particularly convenient for the estimation of density functions with compact support. These asymmetric kernels are nonnegative and free of boundary bias. Moreover, their shape varies according to the location of the data point, thus also changing the amount of smoothing. This paper applies the central limit theorem for degenerate U-statistics to compute the limiting distribution of a class of asymmetric kernel functionals.
dc.languageeng
dc.publisherEscola de Pós-Graduação em Economia da FGV
dc.relationEnsaios Econômicos;522
dc.subjectAsymmetric kernel
dc.subjectBeta kernel
dc.subjectBoundary bias
dc.subjectCentral limit theorem
dc.subjectDensity estimation
dc.subjectGamma kernel
dc.subjectU-statistic theory
dc.titleCentral limit theorem for asymmetric kernel functionals
dc.typeWorking Paper


Este ítem pertenece a la siguiente institución