dc.contributorFGV
dc.creatorAntonucci, Alessandro
dc.creatorZaffalon, Marco
dc.creatorIde, Jaime S.
dc.creatorCozman, Fabio G.
dc.date.accessioned2018-05-10T13:35:50Z
dc.date.accessioned2019-05-22T13:53:04Z
dc.date.available2018-05-10T13:35:50Z
dc.date.available2019-05-22T13:53:04Z
dc.date.created2018-05-10T13:35:50Z
dc.date.issued2006
dc.identifier978-1-58603-645-4
dc.identifier0018-7267 / 1741-282X
dc.identifierhttp://hdl.handle.net/10438/23152
dc.identifier000273476500011
dc.identifierIde, Jaime/0000-0002-7223-1102;
dc.identifierIde, Jaime/B-6615-2014; Ide, Jaime/G-2738-2012
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/2687625
dc.description.abstractCredal networks generalize Bayesian networks relaxing numerical parameters. This considerably expands expressivity. but makes belief updating a hard task even on polytrees. Nevertheless, if all the variables are binary, polytree-shaped credal networks can be efficiently updated by the 2U algorithm. In this paper we present a binarization algorithm, that makes it possible to approximate an updating problem in a credal net by a corresponding problem in a credal net over binary variables. The procedure leads to outer bounds for the original problem. The binarized nets are in general multiply connected, but can be updated by the loopy variant of 2U. The quality of the overall approximation is investigated by promising numerical experiments.
dc.languageeng
dc.publisherIos Press
dc.relationStairs 2006
dc.rightsrestrictedAccess
dc.sourceWeb of Science
dc.subjectBelief updating
dc.subjectCredal networks
dc.subject2U algorithm
dc.subjectLoopy belief propagation
dc.titleBinarization algorithms for approximate updating in credal nets
dc.typeConference Proceedings


Este ítem pertenece a la siguiente institución