dc.contributorEscolas::EMAp
dc.contributorFGV
dc.creatorCraizer, Marcos
dc.creatorTeixeira, Ralph Costa
dc.creatorSilva, Moacyr Alvim Horta Barbosa da
dc.date.accessioned2018-10-25T18:23:53Z
dc.date.available2018-10-25T18:23:53Z
dc.date.created2018-10-25T18:23:53Z
dc.date.issued2011
dc.identifier0047-2468
dc.identifierhttp://hdl.handle.net/10438/25385
dc.identifier10.1007/s00022-011-0078-y
dc.identifier2-s2.0-80255137557
dc.description.abstractGiven a pair of planar curves, one can define its generalized area distance, a concept that generalizes the area distance of a single curve. In this paper, we show that the generalized area distance of a pair of planar curves is an improper indefinite affine spheres with singularities, and, reciprocally, every indefinite improper affine sphere in ℝ3 is the generalized distance of a pair of planar curves. Considering this representation, the singularity set of the improper affine sphere corresponds to the area evolute of the pair of curves, and this fact allows us to describe a clear geometric picture of the former. Other symmetry sets of the pair of curves, like the affine area symmetry set and the affine envelope symmetry set can be also used to describe geometric properties of the improper affine sphere. © 2011 Springer Basel AG.
dc.languageeng
dc.relationJournal of Geometry
dc.rightsrestrictedAccess
dc.sourceScopus
dc.subjectAffine symmetry sets
dc.subjectArea distances
dc.subjectImproper affine spheres
dc.titleA geometric representation of improper indefinite affine spheres with singularities
dc.typeArticle (Journal/Review)


Este ítem pertenece a la siguiente institución