dc.creatorAllegrini, Franco
dc.creatorOlivieri, Alejandro César
dc.date2018-01-23T14:35:26Z
dc.date2018-01-23T14:35:26Z
dc.date2013-07-01
dc.date2018-01-23T14:35:26Z
dc.date2018-01-23T14:35:26Z
dc.date2013-07-01
dc.date.accessioned2019-05-17T20:24:12Z
dc.date.available2019-05-17T20:24:12Z
dc.identifier1873-3573
dc.identifierhttp://hdl.handle.net/2133/10470
dc.identifierhttp://hdl.handle.net/2133/10470
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/2679989
dc.descriptionA new optimization strategy for multivariate partial-least-squares (PLS) regression analysis is described. It was achieved by integrating three efficient strategies to improve PLS calibration models: (1) variable selection based on ant colony optimization, (2) mathematical pre-processing selection by a genetic algorithm, and (3) sample selection through a distance-based procedure. Outlier detection has also been included as part of the model optimization. All the above procedures have been combined into a single algorithm, whose aim is to find the best PLS calibration model within a Monte Carlo-type philosophy. Simulated and experimental examples are employed to illustrate the success of the proposed approach.
dc.formatapplication/pdf
dc.languageeng
dc.publisherElsevier
dc.relationhttps://www.sciencedirect.com/science/article/pii/S0039914013005511?via%3Dihub
dc.relationhttps://dx.doi.org/10.1016/j.talanta.2013.06.051
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsAllegrini, Franco
dc.rightsOlivieri, Alejandro César
dc.rightsUniversidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas
dc.rightsElsevier
dc.rightsopenAccess
dc.subjectPartial least-squares
dc.subjectMultivariate Calibration
dc.subjectVariable Selection
dc.subjectPre-processing Selection
dc.subjectSample Selection
dc.subjectOutlier Detection
dc.titleAn integrated approach to the simultaneous selection of variables, mathematical pre-processing and calibration samples in partial least-squares multivariate calibration


Este ítem pertenece a la siguiente institución