dc.creatorGrinblat, Guillermo
dc.creatorGranitto, Pablo M.
dc.creatorCeccatto, Alejandro
dc.date2011-03-11T13:46:59Z
dc.date2011-03-11T13:46:59Z
dc.date2008
dc.date2011-03-11T13:46:59Z
dc.date2011-03-11T13:46:59Z
dc.date2008
dc.date.accessioned2019-05-17T20:03:13Z
dc.date.available2019-05-17T20:03:13Z
dc.identifier1137-3601
dc.identifierhttp://hdl.handle.net/2133/1718
dc.identifierhttp://hdl.handle.net/2133/1718
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/2676104
dc.descriptionIn this work we propose an adaptive classification method able both to learn and to follow the temporal evolution of a drifting concept. With that purpose we introduce a modified SVM classifier, created using multiple hyperplanes valid only at small temporal intervals (windows). In contrast to other strategies proposed in the literature, our method learns all hyperplanes in a global way, minimizing a cost function that evaluates the error committed by this family of local classifiers plus a measure associated to the VC dimension of the family. We also show how the idea of slowly changing classifiers can be applied to non-linear stationary concepts with results similar to those obtained with normal SVMs using gaussian kernels.
dc.formatapplication/pdf
dc.languageen_US
dc.publisherAsociación Española de Inteligencia Artificial
dc.relationhttp://www.aepia.org/
dc.rights© AEPIA
dc.rightsOpen access
dc.subjectAdaptive methods
dc.subjectSupport Vector Machine
dc.subjectDrifting concepts
dc.titleTime–Adaptive Support Vector Machines
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución