dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversidade Federal de São Carlos (UFSCar)
dc.date.accessioned2018-12-11T17:37:50Z
dc.date.available2018-12-11T17:37:50Z
dc.date.created2018-12-11T17:37:50Z
dc.date.issued2018-01-01
dc.identifierAlgebra and Discrete Mathematics, v. 25, n. 2, p. 177-187, 2018.
dc.identifier1726-3255
dc.identifierhttp://hdl.handle.net/11449/180057
dc.identifier2-s2.0-85050584528
dc.identifier3186337502957366
dc.description.abstractLet G be a group, S = {Si, i ∈ I} a non empty family of (not necessarily distinct) subgroups of infinite index in G and M a ℤ2 G-module. In [4] the authors defined a homological invariant E∗ (G, S, M), which is “dual” to the cohomological invariant E(G, S, M), defined in [1]. In this paper we present a more general treatment of the invariant E∗ (G, S, M) obtaining results and properties, under a homological point of view, which are dual to those obtained by Andrade and Fanti with the invariant E(G, S, M). We analyze, through the invariant E∗ (G, S, M), properties about groups that satisfy certain finiteness conditions such as Poincaré duality for groups and pairs.
dc.languageeng
dc.relationAlgebra and Discrete Mathematics
dc.relation0,241
dc.rightsAcesso restrito
dc.sourceScopus
dc.subject(co)homology of groups
dc.subjectDuality groups
dc.subjectDuality pairs
dc.subjectHomological invariant
dc.titleOn certain homological invariant and its relation with poincaré duality pairs
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución