dc.contributorFederal Institute of São Paulo (IFSP)
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-12-11T17:34:56Z
dc.date.available2018-12-11T17:34:56Z
dc.date.created2018-12-11T17:34:56Z
dc.date.issued2017-09-28
dc.identifier2017 Signal Processing Symposium, SPSympo 2017.
dc.identifierhttp://hdl.handle.net/11449/179379
dc.identifier10.1109/SPS.2017.8053638
dc.identifier2-s2.0-85034750369
dc.identifier6542086226808067
dc.identifier0000-0002-0924-8024
dc.description.abstractThis work describes an algorithm to help in the identification of pathologically affected voices. Based on inverse linear prediction filter (LPC) and discrete wavelet transform (DWT), this method can be used in conjunction with other classifiers in order to improve them, by the addition of the new parameter we propose, DWT-RMS. Using no association with other methods, DWT-RMS gives quantitative evaluation of voice signals from male and female subjects of different ages and leads to an adequate larynx pathology classifier with 85.94% of classification accuracy, 0% of false negatives and 14.06% of false positives, to identify nodules in vocal folds.
dc.languageeng
dc.relation2017 Signal Processing Symposium, SPSympo 2017
dc.rightsAcesso aberto
dc.sourceScopus
dc.subjectpathologies
dc.subjectprediction
dc.subjectsignals
dc.subjectvoice
dc.subjectwavelet
dc.titleLinear prediction and discrete wavelet transform to identify pathology in voice signals
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución