dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-12-11T17:34:03Z
dc.date.available2018-12-11T17:34:03Z
dc.date.created2018-12-11T17:34:03Z
dc.date.issued2018-05-01
dc.identifierInformation Fusion, v. 41, p. 161-175.
dc.identifier1566-2535
dc.identifierhttp://hdl.handle.net/11449/179166
dc.identifier10.1016/j.inffus.2017.09.006
dc.identifier2-s2.0-85029359276
dc.identifier2-s2.0-85029359276.pdf
dc.identifier6542086226808067
dc.identifier0000-0002-0924-8024
dc.description.abstractEntropy (H) is the main subject of this article, concisely written to serve as a tutorial introducing two feature extraction (FE) methods for usage in digital signal processing (DSP) and pattern recognition (PR). The theory, carefully exposed, is supplemented with numerical cases, augmented with C/C++ source-codes and enriched with example applications on restricted-vocabulary speech recognition and image synthesis. Complementarily and as innovatively shown, the ordinary calculation of H corresponds to the outcome of a partially pre-tuned deep neural network architecture which fuses important information, bringing a cutting-edge point-of-view for both DSP and PR communities.
dc.languageeng
dc.relationInformation Fusion
dc.relation1,832
dc.rightsAcesso aberto
dc.sourceScopus
dc.subjectDeep networks
dc.subjectEntropy
dc.subjectHandcrafted feature extraction
dc.subjectImage synthesis
dc.subjectInformation fusion
dc.subjectRestricted-vocabulary speech recognition
dc.titleA tutorial review on entropy-based handcrafted feature extraction for information fusion
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución