Artículos de revistas
Effects of crystal size, acidity, and synthesis procedure on the catalytic performance of gallium and aluminum MFI zeolites in glycerol dehydration
Fecha
2016-10-01Registro en:
Journal of Molecular Catalysis A: Chemical, v. 422, p. 148-157.
1381-1169
10.1016/j.molcata.2015.12.019
2-s2.0-84953791002
2-s2.0-84953791002.pdf
5584298681870865
0000-0002-8356-8093
Autor
Universidade Estadual Paulista (Unesp)
Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA)
Universidade Federal de São Carlos (UFSCar)
Institución
Resumen
The influence on gas-phase catalytic glycerol dehydration of crystal size (S: small, or L: large crystals), acidity, and synthesis procedure for isomorphous incorporation of gallium (Ga-S; Ga-L) or aluminum (Al-S; Al-L) in MFI zeolites was studied. The main product observed was acrolein, with the undesirable parallel formation of deactivating coke molecules such as polyglycols and polyaromatics. The Ga-S zeolite showed the best performance in this reaction, as it provided a combination of adequate accessibility to the microporous system and weak Brønsted acid sites. The chemical and structural properties of the fresh MFI zeolites were studied by X-ray diffraction, nitrogen sorption measurements, scanning electron microscopy, temperature-programmed desorption of NH3, X-ray photoelectron spectroscopy, and 27Al and 29Si MAS-NMR. Solid-state 13C MAS-NMR and thermogravimetric analyses of the spent MFI zeolites confirmed the differences in the nature and amounts of the carbonaceous deposits formed. The polyglycols were preferentially formed on the external surface of the zeolite crystals, as expected due to the greater exposed area. On the other hand, the polyaromatic compounds formed were more abundant inside the micropores of the MFI zeolites, especially those composed of larger crystals and with a greater number of strong Brønsted acid sites.