dc.contributorSISSA
dc.contributorINFN - Sezione di Trieste
dc.contributorINFN - Sezione di Bologna
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-12-11T17:17:42Z
dc.date.available2018-12-11T17:17:42Z
dc.date.created2018-12-11T17:17:42Z
dc.date.issued2018-01-11
dc.identifierJournal of Statistical Mechanics: Theory and Experiment, v. 2018, n. 1, 2018.
dc.identifier1742-5468
dc.identifierhttp://hdl.handle.net/11449/175819
dc.identifier10.1088/1742-5468/aa9dcc
dc.identifier2-s2.0-85041414877
dc.identifier2-s2.0-85041414877.pdf
dc.description.abstractThe critical behavior of the (n + 1)-states Potts model in d-dimensions is studied with functional renormalization group techniques. We devise a general method to derive β-functions for continuous values of d and n and we write the flow equation for the effective potential (LPA) when instead n is fixed. We calculate several critical exponents, which are found to be in good agreement with Monte Carlo simulations and ϵ-expansion results available in the literature. In particular, we focus on Percolation (n → 0) and Spanning Forest (n→-1) which are the only non-trivial universality classes in d = 4,5 and where our methods converge faster.
dc.languageeng
dc.relationJournal of Statistical Mechanics: Theory and Experiment
dc.relation0,614
dc.rightsAcesso aberto
dc.sourceScopus
dc.subjectcritical exponents and amplitudes
dc.titleFunctional RG approach to the Potts model
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución