dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-12-11T17:17:24Z
dc.date.available2018-12-11T17:17:24Z
dc.date.created2018-12-11T17:17:24Z
dc.date.issued2018-02-01
dc.identifierJournal of the Brazilian Society of Mechanical Sciences and Engineering, v. 40, n. 2, 2018.
dc.identifier1806-3691
dc.identifier1678-5878
dc.identifierhttp://hdl.handle.net/11449/175760
dc.identifier10.1007/s40430-018-0995-x
dc.identifier2-s2.0-85040741372
dc.identifier2-s2.0-85040741372.pdf
dc.description.abstractThe existence of Lie symmetries in differential equations can generate transformations in the dependent and independent variables and obtain new equations that may be easier to integrate. In particular, in some situations, one can reduce the order and it is possible to obtain first integrals. Thus, this article presents the application of the fundamental Lie theorem to obtain the complete solution of a classical nonlinear problem of the dynamics of mechanical systems: the bead on a rotating wire hoop. From the first integral obtained with the Lie symmetry generators, the exact solution can be found with the aid of the Jacobi elliptic functions.
dc.languageeng
dc.relationJournal of the Brazilian Society of Mechanical Sciences and Engineering
dc.relation0,362
dc.rightsAcesso aberto
dc.sourceScopus
dc.subjectClassical mechanics
dc.subjectJacobi elliptic functions
dc.subjectLie symmetries
dc.titleApplications of the Lie symmetries to complete solution of a bead on a rotating wire hoop
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución