dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorLaboratory of Biochemistry and Biophysics
dc.date.accessioned2018-12-11T17:16:17Z
dc.date.available2018-12-11T17:16:17Z
dc.date.created2018-12-11T17:16:17Z
dc.date.issued2017-11-28
dc.identifierJournal of Venomous Animals and Toxins Including Tropical Diseases, v. 23, n. 1, 2017.
dc.identifier1678-9199
dc.identifier1678-9180
dc.identifierhttp://hdl.handle.net/11449/175556
dc.identifier10.1186/s40409-017-0136-5
dc.identifierS1678-91992017000100319
dc.identifier2-s2.0-85035104772
dc.identifierS1678-91992017000100319.pdf
dc.description.abstractBackground: Classically, Crotalus durissus terrificus (Cdt) venom can be described, according to chromatographic criteria, as a simple venom, composed of four major toxins, namely: gyroxin, crotamine, crotoxin and convulxin. Crotoxin is a non-covalent heterodimeric neurotoxin constituted of two subunits: an active phospholipase A2 and a chaperone protein, termed crotapotin. This molecule is composed of three peptide chains connected by seven disulfide bridges. Naturally occurring variants/isoforms of either crotoxin or crotapotin itself have already been reported. Methods: The crude Cdt venom was separated by using RP-HPLC and the toxins were identified by mass spectrometry (MS). Crotapotin was purified, reduced and alkylated in order to separate the peptide chains that were further analyzed by mass spectrometry and de novo peptide sequencing. Results: The RP-HPLC profile of the isolated crotapotin chains already indicated that the α chain would present isoforms, which was corroborated by the MS and tandem mass spectrometry analyses. Conclusion: It was possible to observe that the Cdt crotapotin displays a preferred amino acid substitution pattern present in the α chain, at positions 31 and 40. Moreover, substitutions could also be observed in β and γ chains (one for each). The combinations of these four different peptides, with the already described chains, would produce ten different crotapotins, which is compatible to our previous observations for the Cdt venom.
dc.languageeng
dc.relationJournal of Venomous Animals and Toxins Including Tropical Diseases
dc.relation0,573
dc.rightsAcesso aberto
dc.sourceScopus
dc.subjectCrotalus durissus terrificus
dc.subjectCrotapotin
dc.subjectCrotoxin
dc.subjectIsoforms
dc.subjectVenom
dc.titleCrotalus durissus terrificus crotapotin naturally displays preferred positions for amino acid substitutions
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución