dc.contributor | Universidade Estadual Paulista (Unesp) | |
dc.contributor | Universidade Estadual de Campinas (UNICAMP) | |
dc.date.accessioned | 2018-12-11T17:15:29Z | |
dc.date.available | 2018-12-11T17:15:29Z | |
dc.date.created | 2018-12-11T17:15:29Z | |
dc.date.issued | 2017-01-01 | |
dc.identifier | SIAM Journal on Applied Dynamical Systems, v. 16, n. 3, p. 1425-1452, 2017. | |
dc.identifier | 1536-0040 | |
dc.identifier | http://hdl.handle.net/11449/175363 | |
dc.identifier | 10.1137/16M1067202 | |
dc.identifier | 2-s2.0-85031814314 | |
dc.identifier | 8032879915906661 | |
dc.identifier | 0000-0002-8723-8200 | |
dc.description.abstract | This paper is concerned with a geometric study of singularly perturbed systems of ordinary differential equations expressed by (n-1)-parameter families of smooth vector fields on ℝl, where n ≥ 2. The inherent characteristic of such systems is the presence of an arbitrary number n of time scales. For n = 2, the proposed geometric approach in this paper reports to Fenichel theory of fast-slow systems [N. Fenichel, J. Differential Equations, 31 (1979), pp. 53-98]. We extend the three main theorems due to Fenichel [N. Fenichel, J. Differential Equations, 31 (1979), pp. 53-98] to systems involving any number of time scales. | |
dc.language | eng | |
dc.relation | SIAM Journal on Applied Dynamical Systems | |
dc.relation | 1,040 | |
dc.rights | Acesso aberto | |
dc.source | Scopus | |
dc.subject | Fenichel theory | |
dc.subject | Multiple time scales | |
dc.subject | Singular perturbation | |
dc.title | Fenichel theory for multiple time scale singular perturbation problems | |
dc.type | Artículos de revistas | |