dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversidade Estadual de Campinas (UNICAMP)
dc.date.accessioned2018-12-11T17:15:29Z
dc.date.available2018-12-11T17:15:29Z
dc.date.created2018-12-11T17:15:29Z
dc.date.issued2017-01-01
dc.identifierSIAM Journal on Applied Dynamical Systems, v. 16, n. 3, p. 1425-1452, 2017.
dc.identifier1536-0040
dc.identifierhttp://hdl.handle.net/11449/175363
dc.identifier10.1137/16M1067202
dc.identifier2-s2.0-85031814314
dc.identifier8032879915906661
dc.identifier0000-0002-8723-8200
dc.description.abstractThis paper is concerned with a geometric study of singularly perturbed systems of ordinary differential equations expressed by (n-1)-parameter families of smooth vector fields on ℝl, where n ≥ 2. The inherent characteristic of such systems is the presence of an arbitrary number n of time scales. For n = 2, the proposed geometric approach in this paper reports to Fenichel theory of fast-slow systems [N. Fenichel, J. Differential Equations, 31 (1979), pp. 53-98]. We extend the three main theorems due to Fenichel [N. Fenichel, J. Differential Equations, 31 (1979), pp. 53-98] to systems involving any number of time scales.
dc.languageeng
dc.relationSIAM Journal on Applied Dynamical Systems
dc.relation1,040
dc.rightsAcesso aberto
dc.sourceScopus
dc.subjectFenichel theory
dc.subjectMultiple time scales
dc.subjectSingular perturbation
dc.titleFenichel theory for multiple time scale singular perturbation problems
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución