dc.contributorCâmpus Votuporanga
dc.contributorCâmpus Presidente Epitácio
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-12-11T17:12:18Z
dc.date.available2018-12-11T17:12:18Z
dc.date.created2018-12-11T17:12:18Z
dc.date.issued2017-04-20
dc.identifierIET Generation, Transmission and Distribution, v. 11, n. 6, p. 1557-1565, 2017.
dc.identifier1751-8687
dc.identifierhttp://hdl.handle.net/11449/174656
dc.identifier10.1049/iet-gtd.2016.1409
dc.identifier2-s2.0-85019898205
dc.identifier2-s2.0-85019898205.pdf
dc.description.abstractThis study presents a comparison of two developed intelligent systems that carries out, in an integrated manner, failure diagnosis on electric power distribution feeders. These procedures aim to identify and classify critical situations, as high-impedance faults, which can potentially damage the system components and cause power supply interruptions to consumers. The intelligent systems combine the wavelet transform, Dempster-Shafer evidence theory, voting scheme, fuzzy inference system and artificial neural networks. Results show the efficiency, reliability, and robustness of the proposed methodology, allowing its real-time application.
dc.languageeng
dc.relationIET Generation, Transmission and Distribution
dc.relation0,907
dc.rightsAcesso aberto
dc.sourceScopus
dc.titleFuzzy based methodologies comparison for high-impedance fault diagnosis in radial distribution feeders
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución