dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversidad de Granada
dc.date.accessioned2018-12-11T17:11:15Z
dc.date.available2018-12-11T17:11:15Z
dc.date.created2018-12-11T17:11:15Z
dc.date.issued2017-09-15
dc.identifierApplied Mathematics and Computation, v. 309, p. 142-155.
dc.identifier0096-3003
dc.identifierhttp://hdl.handle.net/11449/174467
dc.identifier10.1016/j.amc.2017.04.005
dc.identifier2-s2.0-85017512256
dc.identifier2-s2.0-85017512256.pdf
dc.identifier8300322452622467
dc.identifier0000-0002-6823-4204
dc.description.abstractWe explore the connection between an infinite system of particles in R2 described by a bi-dimensional version of the Toda equations with the theory of orthogonal polynomials in two variables. We define a 2D Toda lattice in the sense that we consider only one time variable and two space variables describing a mesh of interacting particles over the plane. We show that this 2D Toda lattice is related with the matrix coefficients of the three term relations of bivariate orthogonal polynomials associated with an exponential modification of a positive measure. Moreover, block Lax pairs for 2D Toda lattices are deduced.
dc.languageeng
dc.relationApplied Mathematics and Computation
dc.relation1,065
dc.rightsAcesso aberto
dc.sourceScopus
dc.subject2D Toda lattice
dc.subjectBlock Lax pairs
dc.subjectTwo variable orthogonal polynomials
dc.titleBivariate orthogonal polynomials, 2D Toda lattices and Lax-type pairs
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución