dc.contributorFAMAT/UFU
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-12-11T17:09:28Z
dc.date.available2018-12-11T17:09:28Z
dc.date.created2018-12-11T17:09:28Z
dc.date.issued2017-10-02
dc.identifierDynamical Systems, v. 32, n. 4, p. 461-489, 2017.
dc.identifier1468-9375
dc.identifier1468-9367
dc.identifierhttp://hdl.handle.net/11449/174128
dc.identifier10.1080/14689367.2017.1278744
dc.identifier2-s2.0-85010661859
dc.identifier2-s2.0-85010661859.pdf
dc.description.abstractThere is a C1-residual (Baire second class) subset R of symplectic diffeomorphisms on 2d-dimensional manifold, d ≥ 1, such that for every non-Anosov f in R, its topological entropy is lower bounded by the supremum of the Lyapunov exponents of their hyperbolic periodic points in the unbreakable central sub-bundle (i.e. central direction with no dominated splitting) of f. The previous result deals with the fact that for f in a C1-residual set R of symplectic diffeomorphisms (containing R) satisfies a trichotomy: or f is Anosov or f is robustly transitive partially hyperbolic with unbreakable centre of dimension 2m, 0 < m < d, or f has totally elliptic periodic points dense on M. In the second case, we also show the existence of a sequence of m-elliptic periodic points converging to M. Indeed, R contains an C1 open and dense subset of symplectic diffeomorphisms.
dc.languageeng
dc.relationDynamical Systems
dc.relation0,295
dc.rightsAcesso aberto
dc.sourceScopus
dc.subjectelliptic periodic points
dc.subjectgeneric properties
dc.subjecthomoclinic tangency
dc.subjectPartially hyperbolic symplectic systems
dc.subjecttopological entropy
dc.titleC1-Genericity of symplectic diffeomorphisms and lower bounds for topological entropy
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución