dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversitat Autònoma de Barcelona
dc.date.accessioned2018-12-11T17:08:44Z
dc.date.available2018-12-11T17:08:44Z
dc.date.created2018-12-11T17:08:44Z
dc.date.issued2017-04-01
dc.identifierNonlinear Dynamics, v. 88, n. 1, p. 547-553, 2017.
dc.identifier1573-269X
dc.identifier0924-090X
dc.identifierhttp://hdl.handle.net/11449/174011
dc.identifier10.1007/s11071-016-3259-2
dc.identifier2-s2.0-85007492396
dc.identifier2-s2.0-85007492396.pdf
dc.identifier8032879915906661
dc.identifier0000-0002-8723-8200
dc.description.abstractIn this paper we study the existence of transcritical and zero-Hopf bifurcations of the third-order ordinary differential equation x⃛ + ax¨ + bx˙ + cx- x2= 0 , called the Genesio equation, which has a unique quadratic nonlinear term and three real parameters. More precisely, writing this differential equation as a first-order differential system in R3 we prove: first that the system exhibits a transcritical bifurcation at the equilibrium point located at the origin of coordinates when c= 0 and the parameters (a, b) are in the set { (a, b) ∈ R2: b≠ 0 } \ { (0 , b) ∈ R2: b> 0 } , and second that the system has a zero-Hopf bifurcation also at the equilibrium point located at the origin when a= c= 0 and b> 0.
dc.languageeng
dc.relationNonlinear Dynamics
dc.rightsAcesso aberto
dc.sourceScopus
dc.subjectAveraging theory
dc.subjectGenesio system
dc.subjectTranscritical bifurcation
dc.subjectZero-Hopf Bifurcation
dc.titleTranscritical and zero-Hopf bifurcations in the Genesio system
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución