dc.contributor | Universidade Estadual Paulista (Unesp) | |
dc.contributor | Universitat Autònoma de Barcelona | |
dc.date.accessioned | 2018-12-11T17:08:44Z | |
dc.date.available | 2018-12-11T17:08:44Z | |
dc.date.created | 2018-12-11T17:08:44Z | |
dc.date.issued | 2017-04-01 | |
dc.identifier | Nonlinear Dynamics, v. 88, n. 1, p. 547-553, 2017. | |
dc.identifier | 1573-269X | |
dc.identifier | 0924-090X | |
dc.identifier | http://hdl.handle.net/11449/174011 | |
dc.identifier | 10.1007/s11071-016-3259-2 | |
dc.identifier | 2-s2.0-85007492396 | |
dc.identifier | 2-s2.0-85007492396.pdf | |
dc.identifier | 8032879915906661 | |
dc.identifier | 0000-0002-8723-8200 | |
dc.description.abstract | In this paper we study the existence of transcritical and zero-Hopf bifurcations of the third-order ordinary differential equation x⃛ + ax¨ + bx˙ + cx- x2= 0 , called the Genesio equation, which has a unique quadratic nonlinear term and three real parameters. More precisely, writing this differential equation as a first-order differential system in R3 we prove: first that the system exhibits a transcritical bifurcation at the equilibrium point located at the origin of coordinates when c= 0 and the parameters (a, b) are in the set { (a, b) ∈ R2: b≠ 0 } \ { (0 , b) ∈ R2: b> 0 } , and second that the system has a zero-Hopf bifurcation also at the equilibrium point located at the origin when a= c= 0 and b> 0. | |
dc.language | eng | |
dc.relation | Nonlinear Dynamics | |
dc.rights | Acesso aberto | |
dc.source | Scopus | |
dc.subject | Averaging theory | |
dc.subject | Genesio system | |
dc.subject | Transcritical bifurcation | |
dc.subject | Zero-Hopf Bifurcation | |
dc.title | Transcritical and zero-Hopf bifurcations in the Genesio system | |
dc.type | Artículos de revistas | |