dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-12-11T17:04:28Z
dc.date.available2018-12-11T17:04:28Z
dc.date.created2018-12-11T17:04:28Z
dc.date.issued2016-12-01
dc.identifierPhysica A: Statistical Mechanics and its Applications, v. 463, p. 37-44.
dc.identifier0378-4371
dc.identifierhttp://hdl.handle.net/11449/173283
dc.identifier10.1016/j.physa.2016.07.008
dc.identifier2-s2.0-84979239891
dc.identifier2-s2.0-84979239891.pdf
dc.description.abstractA periodic time perturbation is introduced in the logistic map as an attempt to investigate new scenarios of bifurcations and new mechanisms toward the chaos. With a squared sine perturbation we observe that a point attractor reaches the chaotic attractor without following a cascade of bifurcations. One fixed point of the system presents a new scenario of bifurcations through an infinite sequence of alternating changes of stability. At the bifurcations, the perturbation does not modify the scaling features observed in the convergence toward the stationary state.
dc.languageeng
dc.relationPhysica A: Statistical Mechanics and its Applications
dc.relation0,773
dc.rightsAcesso aberto
dc.sourceScopus
dc.subjectAttractor
dc.subjectBifurcation
dc.subjectMulti-stability
dc.subjectPerturbed logistic map
dc.titleSquared sine logistic map
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución