dc.contributor | Univ. de Sevilla | |
dc.contributor | Universidade Federal do Pará (UFPA) | |
dc.contributor | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2018-12-11T17:04:19Z | |
dc.date.available | 2018-12-11T17:04:19Z | |
dc.date.created | 2018-12-11T17:04:19Z | |
dc.date.issued | 2016-06-01 | |
dc.identifier | Topological Methods in Nonlinear Analysis, v. 47, n. 2, p. 693-713, 2016. | |
dc.identifier | 1230-3429 | |
dc.identifier | http://hdl.handle.net/11449/173248 | |
dc.identifier | 10.12775/TMNA.2016.026 | |
dc.identifier | 2-s2.0-84978777030 | |
dc.identifier | 2-s2.0-84978777030.pdf | |
dc.description.abstract | We examine a logistic equation with local and non-local reaction terms both for time dependent and steady-state problems. Mainly, we use bifurcation and monotonicity methods to prove the existence of positive solutions for the steady-state equation and sub-supersolution method for the long time behavior for the time dependent problem. The results depend strongly on the size and sign of the parameters on the local and non-local terms. | |
dc.language | eng | |
dc.relation | Topological Methods in Nonlinear Analysis | |
dc.relation | 0,710 | |
dc.rights | Acesso aberto | |
dc.source | Scopus | |
dc.subject | Bifurcation methods | |
dc.subject | Local and non-local terms | |
dc.subject | Logistic equation | |
dc.title | Study of a logistic equation with local and non-local reaction terms | |
dc.type | Artículos de revistas | |