dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-12-11T17:01:50Z
dc.date.available2018-12-11T17:01:50Z
dc.date.created2018-12-11T17:01:50Z
dc.date.issued2016-04-01
dc.identifierNonlinear Dynamics, v. 84, n. 2, p. 703-713, 2016.
dc.identifier1573-269X
dc.identifier0924-090X
dc.identifierhttp://hdl.handle.net/11449/172702
dc.identifier10.1007/s11071-015-2520-4
dc.identifier2-s2.0-84961166314
dc.identifier2-s2.0-84961166314.pdf
dc.identifier3757225669056317
dc.identifier3724937886557424
dc.identifier0000-0001-6790-1055
dc.description.abstractWe present a global dynamical analysis of the following quadratic differential system (Formula presented.) , where (Formula presented.) are the state variables and a, b, d, f, g are real parameters. This system has been proposed as a new type of chaotic system, having additional complex dynamical properties to the well-known chaotic systems defined in (Formula presented.) , alike Lorenz, Rössler, Chen and other. By using the Poincaré compactification for a polynomial vector field in (Formula presented.) , we study the dynamics of this system on the Poincaré ball, showing that it undergoes interesting types of bifurcations at infinity. We also investigate the existence of first integrals and study the dynamical behavior of the system on the invariant algebraic surfaces defined by these first integrals, showing the existence of families of homoclinic and heteroclinic orbits and centers contained on these invariant surfaces.
dc.languageeng
dc.relationNonlinear Dynamics
dc.rightsAcesso aberto
dc.sourceScopus
dc.subjectCenters on R3
dc.subjectDynamics at infinity
dc.subjectFirst integral
dc.subjectHeteroclinic orbits
dc.subjectHomoclinic orbits
dc.subjectInvariant algebraic surfaces
dc.subjectPoincaré compactification
dc.subjectQuadratic system
dc.titleBifurcations at infinity, invariant algebraic surfaces, homoclinic and heteroclinic orbits and centers of a new Lorenz-like chaotic system
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución