dc.contributor | Universidade Estadual Paulista (Unesp) | |
dc.contributor | Universitat Autònoma de Barcelona | |
dc.contributor | Universidad Del Bío-Bío | |
dc.date.accessioned | 2018-12-11T17:01:17Z | |
dc.date.available | 2018-12-11T17:01:17Z | |
dc.date.created | 2018-12-11T17:01:17Z | |
dc.date.issued | 2015-11-30 | |
dc.identifier | Mathematical Methods in the Applied Sciences, v. 38, n. 17, p. 4289-4299, 2015. | |
dc.identifier | 1099-1476 | |
dc.identifier | 0170-4214 | |
dc.identifier | http://hdl.handle.net/11449/172599 | |
dc.identifier | 10.1002/mma.3365 | |
dc.identifier | 2-s2.0-84959321263 | |
dc.description.abstract | We characterize the values of the parameters for which a zero-Hopf equilibrium point takes place at the singular points, namely, O (the origin), P+, and P- in the FitzHugh-Nagumo system. We find two two-parameter families of the FitzHugh-Nagumo system for which the equilibrium point at the origin is a zero-Hopf equilibrium. For these two families, we prove the existence of a periodic orbit bifurcating from the zero-Hopf equilibrium point O. We prove that there exist three two-parameter families of the FitzHugh-Nagumo system for which the equilibrium point at P+ and at P- is a zero-Hopf equilibrium point. For one of these families, we prove the existence of one, two, or three periodic orbits starting at P+ and P-. | |
dc.language | eng | |
dc.relation | Mathematical Methods in the Applied Sciences | |
dc.relation | 0,666 | |
dc.relation | 0,666 | |
dc.rights | Acesso restrito | |
dc.source | Scopus | |
dc.subject | averaging theory | |
dc.subject | FitzHugh-Nagumo system | |
dc.subject | periodic orbit | |
dc.subject | zero-Hopf bifurcation | |
dc.title | Zero-Hopf bifurcation in the FitzHugh-Nagumo system | |
dc.type | Artículos de revistas | |