dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversitat Autònoma de Barcelona
dc.contributorUniversidad Del Bío-Bío
dc.date.accessioned2018-12-11T17:01:17Z
dc.date.available2018-12-11T17:01:17Z
dc.date.created2018-12-11T17:01:17Z
dc.date.issued2015-11-30
dc.identifierMathematical Methods in the Applied Sciences, v. 38, n. 17, p. 4289-4299, 2015.
dc.identifier1099-1476
dc.identifier0170-4214
dc.identifierhttp://hdl.handle.net/11449/172599
dc.identifier10.1002/mma.3365
dc.identifier2-s2.0-84959321263
dc.description.abstractWe characterize the values of the parameters for which a zero-Hopf equilibrium point takes place at the singular points, namely, O (the origin), P+, and P- in the FitzHugh-Nagumo system. We find two two-parameter families of the FitzHugh-Nagumo system for which the equilibrium point at the origin is a zero-Hopf equilibrium. For these two families, we prove the existence of a periodic orbit bifurcating from the zero-Hopf equilibrium point O. We prove that there exist three two-parameter families of the FitzHugh-Nagumo system for which the equilibrium point at P+ and at P- is a zero-Hopf equilibrium point. For one of these families, we prove the existence of one, two, or three periodic orbits starting at P+ and P-.
dc.languageeng
dc.relationMathematical Methods in the Applied Sciences
dc.relation0,666
dc.relation0,666
dc.rightsAcesso restrito
dc.sourceScopus
dc.subjectaveraging theory
dc.subjectFitzHugh-Nagumo system
dc.subjectperiodic orbit
dc.subjectzero-Hopf bifurcation
dc.titleZero-Hopf bifurcation in the FitzHugh-Nagumo system
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución