dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorNational Academy of Sciences of Ukraine
dc.date.accessioned2018-12-11T17:00:23Z
dc.date.available2018-12-11T17:00:23Z
dc.date.created2018-12-11T17:00:23Z
dc.date.issued2015-12-01
dc.identifierTopological Methods in Nonlinear Analysis, v. 46, n. 2, p. 697-715, 2015.
dc.identifier1230-3429
dc.identifierhttp://hdl.handle.net/11449/172445
dc.identifier10.12775/TMNA.2015.081
dc.identifier2-s2.0-84955246631
dc.description.abstractIn this paper we study functions and vector fields with isolated singularities on a C(ℂPn)-singular manifold. In general, a C(ℂPn)-singular manifold is obtained from a smooth (2n + 1)-manifold with boundary which is a disjoint union of complex projective spaces Claro ℂPn ∪ … ∪ ℂPn and subsequent capture of the cone over each component ℂPn of the boundary. We calculate the Euler characteristic of a compact C(ℂPn)-singular manifold M2n+1 with finite isolated singular points. We also prove a version of the Poincaré-Hopf Index Theorem for an almost smooth vector field with finite number of zeros on a C(ℂPn)-singular manifold.
dc.languageeng
dc.relationTopological Methods in Nonlinear Analysis
dc.relation0,710
dc.rightsAcesso aberto
dc.sourceScopus
dc.subjectManifold
dc.subjectMorse number
dc.subjectPoincaré-hopf index
dc.subjectS1-invariant bott function
dc.subjectSemi-free circle action
dc.titleFunctions and vector fields on C(ℂPn)-singular manifolds
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución