dc.contributorIowa State University
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-12-11T16:59:59Z
dc.date.available2018-12-11T16:59:59Z
dc.date.created2018-12-11T16:59:59Z
dc.date.issued2015-01-01
dc.identifierFrontiers in Physiology, v. 6, n. DEC, 2015.
dc.identifier1664-042X
dc.identifierhttp://hdl.handle.net/11449/172380
dc.identifier10.3389/fphys.2015.00366
dc.identifier2-s2.0-84953257885
dc.identifier2-s2.0-84953257885.pdf
dc.identifier7977035910952141
dc.description.abstractThe emergence of -omics technologies has allowed the collection of vast amounts of data on biological systems. Although, the pace of such collection has been exponential, the impact of these data remains small on many critical biomedical applications such as drug development. Limited resources, high costs, and low hit-to-lead ratio have led researchers to search for more cost effective methodologies. A possible alternative is to incorporate computational methods of potential drug target prediction early during drug discovery workflow. Computational methods based on systems approaches have the advantage of taking into account the global properties of a molecule not limited to its sequence, structure or function. Machine learning techniques are powerful tools that can extract relevant information from massive and noisy data sets. In recent years the scientific community has explored the combined power of these fields to propose increasingly accurate and low cost methods to propose interesting drug targets. In this mini-review, we describe promising approaches based on the simultaneous use of systems biology and machine learning to access gene and protein druggability. Moreover, we discuss the state-of-the-art of this emerging and interdisciplinary field, discussing data sources, algorithms and the performance of the different methodologies. Finally, we indicate interesting avenues of research and some remaining open challenges.
dc.languageeng
dc.relationFrontiers in Physiology
dc.rightsAcesso aberto
dc.sourceScopus
dc.subjectDrug targets
dc.subjectDruggability
dc.subjectMachine learning
dc.subjectNetwork topology
dc.subjectReview
dc.subjectSequence properties
dc.subjectStructural properties
dc.subjectSystems biology
dc.titlePrediction of druggable proteins using machine learning and systems biology: A mini-review
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución