dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorFederal University of Triângulo Mineiro (UFTM)
dc.date.accessioned2018-12-11T16:54:49Z
dc.date.available2018-12-11T16:54:49Z
dc.date.created2018-12-11T16:54:49Z
dc.date.issued2018-01-01
dc.identifierCommunications in Computer and Information Science, v. 831, p. 439-449.
dc.identifier1865-0929
dc.identifierhttp://hdl.handle.net/11449/171305
dc.identifier10.1007/978-3-319-95312-0_38
dc.identifier2-s2.0-85051050352
dc.description.abstractThis article is devoted to obtaining necessary optimality conditions for optimization problems with interval-valued objective and interval inequality constraints. These objective and constraint functions are obtained from continuous functions by using constrained interval arithmetic. We give a concept of derivative for this class of interval-valued functions and we find necessary conditions based on Karush-Kunh-Tucker theorem in their interval version. We present an example to illustrate our results.
dc.languageeng
dc.relationCommunications in Computer and Information Science
dc.relation0,170
dc.rightsAcesso aberto
dc.sourceScopus
dc.subjectConstrained interval arithmetic
dc.subjectInterval optimization problem
dc.titleNecessary optimality conditions for interval optimization problems with inequality constraints using constrained interval arithmetic
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución