Actas de congresos
Fundus Image Transformation Revisited: Towards Determining More Accurate Registrations
Fecha
2018-07-20Registro en:
Proceedings - IEEE Symposium on Computer-Based Medical Systems, v. 2018-June, p. 227-232.
1063-7125
10.1109/CBMS.2018.00047
2-s2.0-85050979005
Autor
Universidade de São Paulo (USP)
Universidade Estadual Paulista (Unesp)
Institución
Resumen
Image registration is an important pre-processing step in several computer vision applications, being crucial in medical imaging systems where patients are examined and diagnosed almost exclusively by images. For fundus images, in which microscopic differences are significant to better support medical decisions, an accurate registration is imperative. Historically, geometric transformations derived from quadratic models have been widely used as a benchmark to perform registration on fundus images, but in this paper, we demonstrate that quadratic and other high-order mappings are not necessarily the best choices for this purpose, even for well-established state-of-the-art registration methods. From a novel overlapping metric designed to determine the best image transformation that maximizes the registration accuracy, we improve the assertiveness of several methods of the literature while still preserving the same computational burden initially reached by those methods.