dc.contributorUniversidade Estadual de Campinas (UNICAMP)
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-12-11T16:40:00Z
dc.date.available2018-12-11T16:40:00Z
dc.date.created2018-12-11T16:40:00Z
dc.date.issued2015-01-01
dc.identifierTheoretical Computer Science, v. 606, p. 42-56.
dc.identifier0304-3975
dc.identifierhttp://hdl.handle.net/11449/168160
dc.identifier10.1016/j.tcs.2015.05.015
dc.identifier2-s2.0-84947864066
dc.identifier2-s2.0-84947864066.pdf
dc.description.abstractThis paper surveys some results on the role of formal polynomials as a representation method for logical derivation in classical and non-classical logics, emphasizing many-valued logics, paraconsistent logics and non-deterministic logics, as well as their potentialities for alternative algebraic representation and for automation. The resulting mechanizable proof method exposed here is of interest for automatic proof theory, as the proof methods are comparable to analytic tableaux in generality and intuitiveness, and seems also to indicate a new avenue for investigating questions on complexity.
dc.languageeng
dc.relationTheoretical Computer Science
dc.relation0,488
dc.rightsAcesso aberto
dc.sourceScopus
dc.subjectDeterministic and non-deterministic many-valued logics
dc.subjectFinite fields
dc.subjectParaconsistency
dc.subjectPolynomial proof systems
dc.titleThe method of polynomial ring calculus and its potentialities
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución