Artículos de revistas
Primary Lung Dendritic Cell Cultures to Assess Efficacy of Spectinamide-1599 Against Intracellular Mycobacterium tuberculosis
Fecha
2018-08-21Registro en:
Frontiers In Microbiology. Lausanne: Frontiers Media Sa, v. 9, 11 p., 2018.
1664-302X
10.3389/fmicb.2018.01895
WOS:000442209500001
WOS000442209500001.pdf
Autor
Colorado State Univ
Universidade Estadual Paulista (Unesp)
Univ Tennessee
Univ N Carolina
RTI Int
Institución
Resumen
There is an urgent need to treat tuberculosis (TB) quickly, effectively and without side effects. Mycobacterium tuberculosis (Mtb), the causative organism of TB, can survive for long periods of time within macrophages and dendritic cells and these intracellular bacilli are difficult to eliminate with current drug regimens. It is well established that Mtb responds differentially to drug treatment depending on its extracellular and intracellular location and replicative state. In this study, we isolated and cultured lung derived dendritic cells to be used as a screening system for drug efficacy against intracellular mycobacteria. Using mono- or combination drug treatments, we studied the action of spectinamide-1599 and pyrazinamide (antibiotics targeting slow-growing bacilli) in killing bacilli located within lung derived dendritic cells. Furthermore, because IFN-gamma is an essential cytokine produced in response to Mtb infection and present during TB chemotherapy, we also assessed the efficacy of these drugs in the presence and absence of IFN-gamma. Our results demonstrated that monotherapy with either spectinamide-1599 or pyrazinamide can reduce the intracellular bacterial burden by more than 99.9%. Even more impressive is that when TB infected lung derived dendritic cells are treated with spectinamide-1599 and pyrazinamide in combination with IFN-gamma a strong synergistic effect was observed, which reduced the intracellular burden below the limit of detection. We concluded that IFN-gamma activation of lung derived dendritic cells is essential for synergy between spectinamide-1599 and pyrazinamide.