dc.contributorUniversidade Federal de Minas Gerais (UFMG)
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversidade Estadual de Campinas (UNICAMP)
dc.date.accessioned2018-11-29T09:28:10Z
dc.date.available2018-11-29T09:28:10Z
dc.date.created2018-11-29T09:28:10Z
dc.date.issued2017-01-01
dc.identifier2017 Ieee International Geoscience And Remote Sensing Symposium (igarss). New York: Ieee, p. 3787-3790, 2017.
dc.identifier2153-6996
dc.identifierhttp://hdl.handle.net/11449/166039
dc.identifierWOS:000426954603221
dc.description.abstractVegetation segmentation in high resolution images acquired by unmanned aerial vehicles (UAVs) is a challenging task that requires methods capable of learning high-level features while dealing with fine-grained data. In this paper, we propose a combination of different methods of semantic segmentation based on Convolutional Networks (ConvNets) to obtain highly accurate segmentation of individuals of different vegetation species. The objective is not only to learn specific and adaptable features depending on the data, but also to learn and combine appropriate classifiers. We conducted a systematic evaluation using a high-resolution UAV-based image dataset related to a campo rupestre vegetation in the Brazilian Cerrado biome. Experimental results show that the ensemble technique overcomes all segmentation strategies.
dc.languageeng
dc.publisherIeee
dc.relation2017 Ieee International Geoscience And Remote Sensing Symposium (igarss)
dc.rightsAcesso aberto
dc.sourceWeb of Science
dc.subjectDeep Learning
dc.subjectSemantic Image Segmentation
dc.subjectUnmanned Aerial Vehicles
dc.subjectPlant Species
dc.titleSEMANTIC SEGMENTATION OF VEGETATION IMAGES ACQUIRED BY UNMANNED AERIAL VEHICLES USING AN ENSEMBLE OF CONVNETS
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución