dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorPrefeitura Municipal Nova Prata
dc.contributorUniv Catolica Campinas
dc.date.accessioned2018-11-26T17:54:54Z
dc.date.available2018-11-26T17:54:54Z
dc.date.created2018-11-26T17:54:54Z
dc.date.issued2018-01-01
dc.identifierRevista Arvore. Vicosa: Univ Federal Vicosa, v. 42, n. 1, 10 p., 2018.
dc.identifier0100-6762
dc.identifierhttp://hdl.handle.net/11449/164523
dc.identifier10.1590/1806-90882018000100006
dc.identifierS0100-67622018000100205
dc.identifierWOS:000441757200002
dc.identifierS0100-67622018000100205.pdf
dc.identifier8959637559404206
dc.identifier0000-0002-4899-3983
dc.description.abstractUrban afforestation has important functions, but problems related to its management are equally relevant, analysis of which is needed in order to prevent accidents. However, due to the subjectivity in the assessment, there may be uncertainty as to the seriousness of the risk. In order to address this, the present work evaluates a neuro-fuzzy-based methodology for the integrated analysis of risk indicators. From the knowledge of experts and a database with 107 cases, systems were constructed for the multi-criteria analysis of 18 parameters integrated using 3 indexes and 5 indicators. As a result, the model presented accuracies of 95.5% in generalization tests, and almost perfect agreement (kappa > 0.8) with the assessment by the expert. In conclusion, the findings show that this neuro-fuzzy modeling approach represents a promising alternative for supporting risk analysis in urban afforestation.
dc.languageeng
dc.publisherUniv Federal Vicosa
dc.relationRevista Arvore
dc.relation0,458
dc.rightsAcesso aberto
dc.sourceWeb of Science
dc.subjectRisk indicators
dc.subjectIntegrated analysis
dc.subjectUncertainties
dc.titleNEURO-FUZZY MODELING: A PROMISING ALTERNATIVE FOR RISK ANALYSIS IN URBAN AFFORESTATION MANAGEMENT
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución