dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-11-26T17:48:37Z
dc.date.available2018-11-26T17:48:37Z
dc.date.created2018-11-26T17:48:37Z
dc.date.issued2018-03-01
dc.identifierNuclear Physics B. Amsterdam: Elsevier Science Bv, v. 928, p. 107-159, 2018.
dc.identifier0550-3213
dc.identifierhttp://hdl.handle.net/11449/163973
dc.identifier10.1016/j.nuclphysb.2018.01.006
dc.identifierWOS:000426994900006
dc.identifierWOS000426994900006.pdf
dc.description.abstractGauge fixing is interpreted in BV formalism as a choice of Lagrangian submanifold in an odd symplectic manifold (the BV phase space). A natural construction defines an integration procedure on families of Lagrangian submanifolds. In string perturbation theory, the moduli space integrals of higher genus amplitudes can be interpreted in this way. We discuss the role of gauge symmetries in this construction. We derive the conditions which should be imposed on gauge symmetries for the consistency of our integration procedure. We explain how these conditions behave under the deformations of the worldsheet theory. In particular, we show that integrated vertex operator is actually an inhomogeneous differential form on the space of Lagrangian submanifolds. (C) 2018 Published by Elsevier B.V.
dc.languageeng
dc.publisherElsevier B.V.
dc.relationNuclear Physics B
dc.relation1,744
dc.rightsAcesso aberto
dc.sourceWeb of Science
dc.titleIntegration over families of Lagrangian submanifolds in BV formalism
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución