dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-11-26T17:48:35Z
dc.date.available2018-11-26T17:48:35Z
dc.date.created2018-11-26T17:48:35Z
dc.date.issued2017-01-01
dc.identifier2017 Ieee Power & Energy Society General Meeting. New York: Ieee, 5 p., 2017.
dc.identifier1944-9925
dc.identifierhttp://hdl.handle.net/11449/163964
dc.identifierWOS:000426921800154
dc.description.abstractThis work proposes the Adaptive Genetic Algorithm (AGA) to solve the problem of Fault Indicator (FI) placement in electric distribution systems to improve customer service quality. The AGA is developed to obtain the best configuration for the placement of FIs in the system reducing the annual cost of energy not supplied (CENS) and the annual FI placement investment cost (CINV). The AGA uses dynamically calibrated crossover and mutation rates based on the diversity of each population in the generation. The algorithm is tested using three electric distribution systems and the results shown that AGA is efficient, robust and adequate to placement of FI for improving the service quality in electric distribution systems.
dc.languageeng
dc.publisherIeee
dc.relation2017 Ieee Power & Energy Society General Meeting
dc.rightsAcesso aberto
dc.sourceWeb of Science
dc.subjectAdaptive genetic algorithm
dc.subjectFault indicators
dc.subjectService quality
dc.subjectElectric distribution systems
dc.titleOptimal Placement of Fault Indicators using Adaptive Genetic Algorithm
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución