dc.contributorQuaid I Azam Univ
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversidade Estadual de Campinas (UNICAMP)
dc.date.accessioned2018-11-26T17:40:20Z
dc.date.available2018-11-26T17:40:20Z
dc.date.created2018-11-26T17:40:20Z
dc.date.issued2017-09-01
dc.identifierComputational & Applied Mathematics. Heidelberg: Springer Heidelberg, v. 36, n. 3, p. 1273-1297, 2017.
dc.identifier0101-8205
dc.identifierhttp://hdl.handle.net/11449/163157
dc.identifier10.1007/s40314-015-0281-9
dc.identifierWOS:000408226800011
dc.identifierWOS000408226800011.pdf
dc.description.abstractWe present a computational approach based on algorithmic techniques to obtain maximal cyclic subgroups of the groups of units in Galois rings. The objective of this work was to provide an automated methodology to obtain such maximal cyclic subgroups for minimizing the human effort in such calculations. Necessity of getting a stock of maximal cyclic subgroups is due to their novel role in the formation of cyclic codes over finite commutative rings and prophesied shifting of S-box construction through binary field extensions GF(2(h)), 1 <= h <= 8 to these maximal cyclic subgroups of the groups of units of finite Galois rings GR(2(k), h).
dc.languageeng
dc.publisherSpringer
dc.relationComputational & Applied Mathematics
dc.relation0,272
dc.rightsAcesso aberto
dc.sourceWeb of Science
dc.subjectGalois field
dc.subjectGalois ring
dc.subjectGroup of units
dc.subjectMaximal cyclic subgroup
dc.subjectCayley table
dc.titleMaximal cyclic subgroups of the groups of units of Galois rings: a computational approach
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución